
A PARALLEL ALGORITHM FOR GLOBAL ROUTING

Randa// J. Brouwer and Prithviraj Banerjee

Center for Reliable and High Performance Computing

University of Illinois at Urbana-Champaign

1101 W. Springfield Ave.

Urbana, IL 61801

/

ABSTRACT

A Parallel _erarchical algorithm for Global Routing (PH/GURE) is presented in this paper. The

router is based on the work of Burstein and Pelavin [1], but has many extensions for general global routing

and parallel execution. Main features of the algorithm include structured hierarchical decomposition into

separate independent tasks which are suitable for parallel execution and adaptive simplex solution for

adding feedthroughs and adjusting channel heights for row-based layout. In this paper we will be examin-

ing closely alternative decomposition methods and the various levels of parallelism available in the algo-

rithm, The algorithm is described and results are presented for a shared-memory multiprocessor imple-

mentation.

I. INTRODUCTION

The computational requirements for high quality synthesis and analysis of VLSI designs far outpaces

the rapidly growing complexity of VLSI designs. One appcoach to handle the complexity problem has

been to apply parallel processing to certain Computer-Aided Design (CAD) applications[2/because of the

advantages of being able to solve /arger prob/ems sizes, achieve high qua/ity resu/ts, and affordability of

the low cost mu/tiprocessors. Along with global routing, research in parallel processing for CAD has

included the tasks of floor planning [3], cell placement [4,5,6,7,8], circuit extraction [9], and test

generation/fault simulation [10]. This research has demonstrated the wide variety of CAD applications that

can be solved with parallel processing.

Acknowledgment:
NASA NAG 1-613.

This research was supported by th_ National Aeronautics and Space Administration under contract

(_A%A-CR-]86152) A PARALLEL ALGORITHM FOE N90-23959
GLOBAL _OUTIN_ (Illinois Univ.) 22 p

CeLL 093
Unclas

GS/01 0287_3

2

In this paper, we present a new parallel algorithm for global routing called PHIGURE, a Parallel

Hierarchical Global Router. The task of global routing is to take a netlist, a list of pin positions, and a

description of the available routing resources and determine the connections and macro paths for each

net. Figure 1 shows a simple global routing problem for a chip with pads(P) and standard cells(C) in rows.

A global router must make choices beween altemative paths for a net. Some criteria used to evaluate the

quality of the routing include: total net length, total chip area, the number of tracks required (row-based

routing), the number of feedthroughs used, and the number of vias required. For row-based layout, the

output of the global router is used to set up the channels to be routed by a channel router.

Previous research in uniprocessor global routing can be basically divided into these categories:

minimum spanning tree solutions [11,12], maze routing [13], physical analogies [14, 15, 16], and hierarchi-

cal routing [1,17, 18]. Minimum spanning tree solutions model net connections as a spanning graph and

try to reduce the graph to a tree while minimizing a cost function. In order to be effective, however, these

solutions must handle the net ordering problem. Maze routing solutions apply aline/wave expansion algo-

rithm to route one net at a time. Again, the net ordering problem affects the quality of the results. Physical

analogy approaches have modeled the routing problem into the framework of concepts like simulated

annealing, attractive and repulsive forces, and electromagnetics. Top-down and Bottom-up hierarchical

approaches have also been studied. Other research work on routing has concentrated on combinations of

these approaches along with the net rip-up and reroute technique.

In the past, several researchers have proposed parallel approaches to the global routing problem.

One approach was to develop a maze routing algorithm suitable for a special purpose hardware routing

machine, made up of a 2-D array of microprocessors [19J. Similarly, a maze router was implemented on

the AAP-1 2-D array processor [20]. Two other algorithms for maze routing have been developed,

specifically for the hypercube [21,22]. A different approach, developed by Rose for shared-memory mul-

tiprocessors [23], determines the best of possible two-bend routes for each two-pin subnet of each net.

Along with the problem of net order dependence, these parallel routing approaches also suffer from

routing quality degradation. Thus, since hierarchical routing methods not only route all nets at the same

time and incur no routing degradation with parallelism, but also are useful in handling large and complex

routing problems, we have developed a parallel top-down hierarchical router.

In SectionII of this paper we discuss our global routing model, and the hierarchical routing tech-

nique. In Section III we provide an overview of the decomposition strategies applied to subdivide and

solve the problem, along with other issues in the algorithm design. Implementation details and parallel

processor results for the algorithm are given in Section IV.

II. THE GLOBAL ROUTING FORMULATION

2.1. Global Routing Model

The global routing model we are using is similar to that of Burstein and Pelavin [1]. The entire layout

area (including pads) is divided into a two-dimensional array of routing cells. Each routing cell is assigned

routing capacity information for each of its four boundaries, based on the physical dimensions of the mut-

ing cell. ThiS provides constraints on the number of nets that can be routed through the edges of the rout-

ing cell, as in Figure 2.

At each level of the hierarchical decomposition, the current set of routing cells is divided into four

regions, forming a two-by-two array of supercells. Thus, each supercell will encompass a sub-region of

the layout area. These supercells are further divided at later steps of the decomposition. Each net is cast

into one of 15 net types, based on the presence of pins in each of the four supercells. The net types con-

sisting of two or more pins are shown in Figure 3, along with the possible routings for each. Such a formu-

lation was proposed by Burstein and Pelavin [1].

A linear (integer) programming formulation of the problem (LP) is defined such that

For all x, MAX (px)
subject to Ax < a and Bx = b,

where x represents the variable space, p represents the objective function, A and a represent the inequal-

ity constraints, and B and b represent any equality constraints. In our problem, the set of variables,

xi, 0<_i<_27,represent the 28 possible net routings and the set of 15 constraints is based on the available

routing capacities and the types of nets being routed. The cost function is designed to minimize intercon-

nection lengths of the nets. The resulting values of the variables xi represent the number of nets routed in

the particular pattern which the variable represents. After a solution to the LP is found, the nets are

assigned to the appropriate configuration.

2.2. EstimatingRoutingCapacities

Intheroutingcapacitymodel,it issufficientforeachroutingcell to maintain capacity information for

only two of its four shared edges (for example the top and right edges). Denote the vertical capacity for a

routing cell in row r and column c as Vr,c (across the top edge), and the horizontal capacity as hr,c (across

the right edge). Let L, R, T, and B be the left, right, top, and bottom edges (rows and columns) of the

region to be solved. Let Xand Ybe the locations of the vertical (Y) and horizontal (X) axes respectively

of the two-by-two superoell array. Let CAPj, i _ A,B,C,D represent the capacities of the four axis seg-

ments in clockwise order around the two-by-two supercell array, as shown in Figure 4(a). Then

CA PA = _ min (hi,x_1,h_,x,hi,x+1)

= ,___rain (vy_l,i,Vy,_,Vy+lCAPB

CAPc= ,___rain (hi,x-l,hi,x,hi,x+l)

= _= rain (vy_l,i, Vy,_,Vy.1CA Pc

This scheme quickly estimates the capacity of the axes with little chance of overestimating by concentrat-

ing on the regions closest to the axis. Cases in which the cell capacities are nonuniform near an axis are

handled as well. Figure 4(b) illustrates the capacity estimation for the example in Figure 2.

2.3. Feedthrough Insertion and Channel Width Expansion

In row-based layout, feedthroughs must be inserted into the rows to make connections when no

built-in feedthroughs or equivalent pins are available when connections must be made from row_ to rcw_.2.

PHIGURE handles the problem through the simplex computations. After the problem has been set up, if

sufficient routing facilities are available, a solution will be found, else the simplex algorithm will terminate

with an infeasible initial problem. By analyzing the simplex state and the given routing problem, adjust-

ments to certain capacities will provide a feasible initial problem for the simplex algorithm. Adjustments to

CAPA and CAFc are equivalent to increasing the channel width. Adjustments to CAPe and CAPD are

equivalent to inserting feedthroughs in the row along the X axis. This technique has proven very effective

in PHIGURE.

2.4. Hlerarch'ical Decomposition

As mentioned earlier, we are applying two-dimensional hierarchical decomposition methods to the

global routing problem. At each stage of the hierarchy we divide a larger problem into four smaller sub-

problems (divide and conquer). Deciding how to partition the subproblems so that they are independent of

each other is very important. One primary decision has to do with how net-crosslng locations along the

boundaries between the subproblems are determined and locked in place. We have investigated two

approaches which are discussed in the following sections.

2.4.1. Maximal Boundary Determination

The first strategy completely determines the net crossing locations by recursively decomposing

along the axes of interest down to the routing cell level. This strategy is computationally more costly than

the one to be discussed in the next section, but the advantage is that the boundary interface is determined

hierarchically as well. Figure 5 shows the first steps in the decomposition for this strategy. The nodes of

the graph represent a complete solution of a two-by-two routing instance. The arcs of the graph represent

dependencies from child nodes (below) to their parent node (above). In Step 1 and Step 2, the top-most

two-by-two solution is followed first by the recursive subdivision and solution of the X axis, down to the

level of individual routing cells, and second by the recursive subdivision and solution of the Y axis. After

completing these steps, the net crossings have been completely determined and locked into place along

both axes of the two-by-two superoell problem, and the four sub-problems for Step 3 are completely

independent of each other. This sequence of steps is then recursively repeated until the net crossings

across all routing cell edges have been determined. This strategy utilizes the maximum number of two-

by-two routing solutions.

2.4.2. Minimal Boundary Determination

Figure 6, shows the first steps in the hierarchical decomposition for this second strategy. The top-

most two-by-two problem is solved (Step 1), followed by quick heuristic approximations of the crossings of

nets. The four subproblerns are then completely independent in Step 2. These steps are repeated recur-

sively until the routing cell level (supercell = routing cell) is reached. This strategy utilizes the fewest

two-by-two routing solutions for a hierarchical routing.

6

The strategy of the minimal determination of the boundary lines is by far the fastest since the number

of nodes in the graph (or solutions of two-by-two routing instances) is much less than for the Maximal

Boundary Determination strategy; however, there is a trade-off in the expected quality of the solution for

computation speed. The routing difficulty comes because without a costly complete analysis, it is

extremely hard to best determine exactly where along the boundaries each net should. Some approxima-

tions based on the pin locations of each net are used to estimate the crossing, but if the boundaries are

not well predicted, the quality of the routing will be severely degraded starting from the top-most two-by-

two solution (Step 1). The Maximal strategy takes the extra effort to completely analyze the routing con-

straints in a hierarchical fashion.

2.5. Task Complexity

task.

In the previous sections, we have discussed some of the basic elements of the two-by-two solution

These are summarized as follows:

1. Evaluate pin types.
2. Set up linear programming formulation.
3. Solve linear/integer program.
4. Assign routing pattern to each net.
5. Subdivide area for next level of hierarchy.
6. Repeat with child nodes.

THEOREM 1: The complexity of a solution of a taskis O(n), where n is the number of nets.

Proof: We will show that each subtask is O(n) in the worst case. A circuit is assumed to have p = kn,

where p is the number of pins or net terminals, k is a constant equal to the average number of pins per

net, and n is the number of nets in the circuit. Thus p is O(n).

1.

.

,

To evaluate each pin type requires a search for pins in the current region. This operation is

O(p)=O(n).

Each net is assigned to a specific linear prograJa vadable based on the characteristics of the net's

pins. This subtask is O(n).

The simplex solution of a linear program (with 27 variables, a fixed number independent of the prob-

lem size) can be shown to terminate in a finite number of pivots (steps) provided proper pivoting

7

.

5.

done in constant time.

Thus, the complexity of a task solution is O(n).

techniques are used. We are also applying cutting plane methods to convert the linear program

solution into an integer solution [24]. Measurements taken show that the average number of pivots

in the simplex solution to be less than 6.

The current implementation utilizes a very simple assignment algorithm which runs in O(n).

Subdivision of the current two-by-two region and setup for the next level of the decomposition can be

QED

The total complexity of each strategy is the product of the task complexity and the total number of

tasks (nodes), which is proportional to the number of routing cells. If M is the total number of routing cells

and n is the number of nets, then the computational complexity of PHIGURE is O(nM).

2.6. Experimental Results on Task Complexity

In the following figures, the measurements were taken on the Encore Multimax executing the Maxi-

mal Strategy on the Primary 1 benchmark. The iteration number refers to the task solution number in a

depth-first trace of the execution graph. Figure 7 shows the time taken to setup the net types before the

LP solution for each of the task solutions. The average time is 12.9 ms; the standard deviation is 1.2 ms.

Figure 8 shows the time taken to solve the given LP problem for each task solution. The average time is

5.7 ms; the standard deviation is 5.3 ms. Figure 9 shows the execution time to assign the net types to a

specific configuration for each task solution. The average time is 1.0 ms; the standard deviation is 0.6 ms.

Figure 10 shows the total execution time for each task solution. The average time is 19.6 ms; the stan-

dard deviation is 5.6 ms.

III. PARALLEL ALGORITHM OVERVIEW

3.1. Exploltatlon of Coarse-Gralned Parallellsm

Since the ratio of execution time to synchronization/communication time for the nodes of the execu-

tion graph is very large, these tasks are considered to be coarse-grained.

8

The parallel execution of a binary tree is a well known paradigm, and as we discussed in previous

sections, the hierarchical routing execution in PHIGUREtakes the form of a binary tree in which the nodes

of the tree represent the LP set-up, the LP solution, and the net assignments for a single two-by-two rout-

ing problem. Furthermore, each node of the tree that is currently being evaluated is completely indepen-

dent of all other active nodes. The local information for the current sub-problem is derived from its parent

node's data structures and global pin location information which is strictly read-only. The solution of the

routing subproblem causes the executing process to write the results to a global (shared) output data

structure. Since the tasks are spatially independent, there are no contention or race hazards as a process

writes out its results.

After writing the results, the process creates two child routing subproblems. One child subproblem is

assigned to the first idle and waiting process. The second child subproblem is then executed by the

parent itself. If no processes are waiting, the parent will proceed to execute the first subproblem, followed

by the second. The number of processes created and initially available for subproblem solution is set

equal to the number of processors available to the user.

The routing solution complexity and speedup under parallel execution for both decomposition stra-

tegies are estimated in the following sections.

3.1.1. Maximal Boundary Determination

Given R rows and C columns of routing cells, the required number of evaluations to solve the verti-

cal segments of all routing cells in the maximal decomposition strategy is (R - 1) x (C - 1). Likewise, the

required number of evaluations to solve the horizontal segments is (C - 1) x (R - 1). However, one verti-

cal and one horizontal component is solved at each iteration, so the total number of evaluations N2x2 is

N2x2= (R- 1)(C - 1).

This expression has been verified through actual runs of PHIGURE. The estimated execution time for one

process is then

T1 = T2x2(R - 1)(C - 1),

where T2x2 is the average time to solve a single two-by-two routing problem as a linear function of the

number of nets n. The estimated execution time Tp for P processes is equal to the time spent executing

untilallP processes are activated plus the time spent in full parallel execution:

I (R _ 1)(C _ 1) _ ___ 13Tp = (T2x2+ Tsync) 210g2P + Iog4P - 2 + p

where Tsync is an estimation of the time spent in synchronization. After simplifying the expression, we get

Tp=(T2x2+ T,ync)((R- l_ C-1) 13P-133p +@log2P).

The expected speedup is then

T1 T2x2 6P(R - 1)(C - 1
Sp = _ = (T2x2 + Tsync) 6(R - 1)(C - 1) - 26P + 26)+ 15Plog2/""

3,1.2. Minimal Boundary Determination

Again, given R rows and C columns of routing cells, Z = min(R,C), the required number of node

tasks to solve is

F
Tp = (T2x2+ Tsync)JIog4P

%

After simplifying the expression, we get

mog_-1 Z"2- 1N2x2 _ 4y = T'

in which the equality holds for cases when Iog2Z is an integer. The estimated time for completion for one

process is N22 xT22. Again, the estimated execution time for P processes is equal to the time spent exe-

cuting until all P processes are activated plus the time spent in full parallel execution:

z,-,4T-
P

The expected speedup is then

Tp=(T2,2+ +½.og2PI.

T1 T2x2 2P(Z 2 - 1)
Sp = Tp = (T2x2 + Tsync) 2Z z - 2P + 3PIog2P"

Figure 11 provides a graphical look at the previous set of equations assuming that _ = 0.1.
I 2x2

Included in the plot is an estimate of process efficiency (useful time/total time) and its effect on the possi-

ble speedup. The current implementation provides dynamic task scheduling based on process availability.

Thus, due to task granularity, there will be times when a process waits idle for a new task to be generated.

As the number of processes increases, the process efficiency is expected to decrease.

10

3.2. Exploitation of Fine-Grained Parallelism

There are three specific subtasks which can be executed in parallel at a fine-grained level. First,

during the LP setup, the type for each net of the current two-by-two problem is determined. Since each

net is independent, the nets may be divided between available processes and evaluated in parallel.

Second, the exchange operations required to solve the linear/integer program may also be divided

between available processes for parallel execution. Finally, the assignment of nets could also be done in

parallel, based on specific net types. Each of these areas of parallelism are orthogonal to each other.

However, since the amount of parallelism available at the task level is so great, the exploitation of

parallelism at the fine-grain level would not provide significant improvement. Only during the startup

phase of the execution tree will there be specific processes idle. Figure 12 shows the percentage of the

number of two-by-two solutions in the startup phase to the total number of two-by-two solutions for routing

problems with R = C = Z and P = 16. As is clear from the figure, the part of the execution in large sized

problems for which fine-grain parallelism can be useful is extremely small. Furthermore, parallelism of the

simplex solution would not be effective since the average number of pivoting operations for solution is less

than 6. Therefore, we determined that is was unnecessary to implement these tasks at such a fine-grain

level.

IV. IMPLEMENTATION AND RESULTS

PH/GUREwas implemented using approximately 5000 lines of C code on an eight processor Encore

Multimax 510 (shared memory multiprocessor), in which each processor is a National 50310 CPU. Exper-

iments were performed on a few of the placement and routing benchmarks from the MCNC Workshop on

Placement and Routing, along with a number of other circuits. Testing was done for a single process, two

processes, four processes, and eight processes.

Table 1 compares the routing results of PHIGUREto actual runs of the "l"imberWolf5.4 global router

(TW) [11], and some of the recently published results for the UTMC router (UT) [11], a router by Cong and

Preas (CP) [12], and Locusroute (LR) [23], This table shows that PH/GURE performs well within the range

of some recently published routers. Table 2 compares the uniprocess runtimes for the "13mberWolf5.4

router with those of PHIGURE. These measurements were taken on a Sun 3/110 workstation.

11

Table 3 shows the results for two of the Placement and Routing Workshop benchmark circuits and

three other standard cell circuits. For each circuit, the table gives the number of tracks used as estimated

by the maximum channel density and the average execution times in seconds (real time, including pro-

cess creation) for one, two, four, and eight processes using the Minimal and Maximal decomposition stra-

tegies. Cell placements for all of the circuits were performed by TimberWolf 5.4. As is clear from the

table, there is no degradation in routing quality when going from a single process to many processes, and

very good speedups were achieved (>6 for 8 processes). Since the hierarchical decomposition creates a

large number of jobs after the first few steps, our algorithm is scalable for a large numbers of processes.

V. CONCLUSIONS

In this paper we have presented a new parallel global router, PHIGURE, which applies hierarchical

routing and decomposition techniques to create independent subproblems which can be evaluated in

parallel. Results were presented which compare two strategies for decomposing the routing problem and

show that high quality routings are attainable for one strategy. Most importantly, the routing quality is not

degraded by decomposing in parallel. We are currently investigating improved task scheduling schemes,

improved net assignment techniques, incorporating fine grain parallelism, implementation on a message-

passing multiprocessor, extensions to a combined place and route algorithm, and strategies for adaptive

rerouting of problem nets.

12

REFERENCES

[1] M.Bursteinand R. Pelavin, "Hierarchical Wire Routing," IEEE Trans. CAD, vol. CAD-2, No. 4, pp.
223-234, Oct. 1983.

[2] P. Banerjee, "The Use of Parallel Processing in VLSI Computer-Aided Design Applications,"
ICCAD-88 Tutorial, also Tech. Report No. CSG-104, Coordinated Science Laboratory, Univ. of
Illinois, Urbana, IL, May 1988.

[3] R. Jayaraman and R. A. Rutenbar, "Floorplanning by Annealing on a Hypercube Multiprocessor,"
Proc. Int. Conf. Computer-Aided Design, pp. 346-349, Nov. 1987.

[4] J. Sargent and P. Banerjee, "A Parallel Row-Based Algorithm for Standard Cell Placement with
Integrated Error Control," Prec. 26th Design Automation Conf., pp. 590-593, Jun. 1989.

[5] S.A. Kravitz and R. A. Rutenbar, "Placement by Simulated Annealing on a Multiprocessor," IEEE
Trans. Computer-Aided Design, vol. CAD-6, No 4, pp. 534-549, Jun. 1987.

[6] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, "A Parallel Simulated Annealing Algorithm
for the Placement of Macro-Cells," Proc. Int. Conf. Computer-Aided Design, pp. 30-33, Nov. 1986.

[7] J.S. Rose, D. R. Blythe, W. M. Snelgrove, and Z. G. Vranesic, "Fast, High Quality VLSI Placement
on a MIMD Multiprocessor," Proc. Int. Conf. Computer-AidedDesign, pp. 42-45, Nov. 1986.

[8] R.M. Kling and P. BanerJee, "ESP: Placement by Simulated Evolution," IEEE Transactions
Computer-Aided Design, vol. CAD-8, No 2, pp. 245-256, March 1989.

[9] K.P. Belkhale and P. Banerjee, "PACE: A Parallel VLSI Circuit Extractor on the Intel Hypercube
Multiprocessor," Proc. Int. Conf. Computer-Aided Design, pp. 326-329, Nov. 1988.

[10] S. Patil and P. Banerjee, "Fault Partitioning Issues in an Integrated Parallel Test Generation/Fault
Simulation Environment," Proc. int. Test Conf., pp. 718-726, Aug. 1989.

[11] K.W. Lee and C. Sechen, "A New Global Router for Row-Based Layout," Prec. Int. Conf.
Computer-Aided Design, pp. 180-183, Nov. 1988.

[12] J. Cong and B. Preas, "A New Algorithm for Standard Cell Global Routing," Proc. Int. Conf.
Computer-Aided Design, pp. 176-179, Nov. 1988.

[13] R. Nair, "A Simple Yet Effective Technique for Global Wiring," IEEE Trans. CAD, vol. CAD-6, No.
2, pp. 165-172, Mar. 1987.

[14] M.P. Vecchi and S. Kirkpatrick, "Global wiring by simulated annealing," IEEE Trans. Computers,
vol. C-7, pp. 215-222, Oct. 1983.

[15] N. Hasan and C. L. Liu, "A Force-Directed Global Router," Proc. Stanford Conference on
Advanced Research in VLSl, pp. 135-150, 1987.

[16] C.D. Hechtman and J. J. Lewandowski, "A Flux Directed Approach to a Wire Routing Problem,"
IEEE VLSl TechnicalBu/letin, vol. 4, No. 3/4, pp. 124-138, SepJDec. 1989.

[17] M. Marek-Sadowska, "Global Router for Gate Array," Proc. Int. Conf. Computer Design, pp. 332-
337, Oct. 1984.

[18] W.K. Luk, D. T. Tang, and C. K. Wong, "Hierarchical Global Wiring for Custom Chip Design,"
Proc. 23rd Design Automation Conference, pp. 481-489, June 1986.

[19] R. Nair, S. J. Hong, S. Liles, and R. Villani, "Global Wiring on a Wire Routing Machine," Proc. 19th
Design Automation Conference, pp. 224-231, Jun. 1982.

[20] T. Watanabe, H. Kitazawa, and Y. Sugiyama, "A Parallel Adaptable Routing Algorithm and its
Implementation on a Two-Dimensional Array Processor," IEEE Transactions Computer-Aided
Design, vol. CAD-6, No 2, pp. 241-250, March 1987.

[2i] O.A. Olukotun and T. N. Mudge, "A Preliminary Investigation into Parallel Routing on a Hypercube
Computer," Prec. 24th Design Automation Conference, pp. 814-820, June 1987.

13

[22] Y.WonandS.Sahni,"Maze Routing On A Hypercube Multiprocessor Computer," Proc. Int. Conf.
on Para/le/Processing, pp. 630-637, Aug. 1987.

[23] Jonathan Rose, "LocusRoute: A Parallel Global Router for Standard Cells," Proc. 25th Design
Automation Conference, pp. 189-195, June 1988.

[24] RoS. Garfinkel and G. L. Nemhauser, Integer Programming. New York, NY: John Wiley and Sons,
Inc., 1972. pp. 154-165.

List of Figures

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

Figure8.

Figure9.

ExampleGlobal Routing Problem.

Routing Cell Model.

Net Types and Possible Routings.

(a) Axes Capacities of 2x2 Supercell (b) Example,

Maximal Boundary Determination.

Minimal Boundary Determination.

Net Setup Time vs. Iteration Number.

LP Solution Time vs. Iteration Number.

Net Assignment Time vs. Iteration Number.

Figure 10. Total Time vs. Iteration Number.

Figure 11. Plot of Projected Speedup vs. Number of Processes.

Figure 12. Percentage of Tasks in Startup Phase.

List of Tables

Table 1. Routing Quality Comparison,

Table 2. Uniprocessor Runtime Comparison on a Sun 3/110.

Table 3. Parallel Algorithm Results.

ll 'lD

Figure 1. Example Global Routing Problem.

4 2 2 i

1 4 i C,

; 2

" ^ 3 ";

, 2 3

Figure 2. Routing Cell Model.

Type

0011

0101

0110 _]

0111

1001

1010

1011 _]

1100

1101 _}

1110

1111

Configuration

Variable

Xo_ xl _}

x2_ x3[_

x4[_ xs_

x.f_x,[_x._
x_t_ Xlo_

x_1[_ x_}

x,_ x,,_x,_

x,_ x,_ x_
x=,t_x_ x_
x=,_x_ x_ x_

Figure 3. Net Types and Possible Routings.

.--I

C_

y._ _ .4P_

Cl

PA

..AP

Pc

CA[

CAP,_=R

CA/

'A----5

("_AP-==2_

_c--4

(a) (b)

Figure 4. (a) Axes Capacities of 2x2 Supercell (b) Example.

STEP X Y

1
ooo,oo.,..I, oo,,,,, ,,ooo.,,,oo°_.o, • ,°

• o, 4,°oo °°,,o ! ,,,,°oo,o

3
°o°, ,I°,° °oo,°, ol °°o,,o,,,o''°'°'

......... d°°° ,o.,, olo,o, o°-----,-,,,

5

°oo

Q

Figure 5. Maximal Boundary Determination.

STEP Q

.... °°.°.|•°°,,,°° • ,°° °,°°.,.

• °i o°°° *= o°=

Figure 6• Minimal Boundary Determination•

40

Elapsed
Time

(msec)

30-

20--

10--

0

.Wo , ,, • ° •

I I I
5OO 1000 1500

Iteration Number

2000

Figure 7. Net Setup Time vs. Iteration Number.

100

80-

60-
Elapsed
Time
(msec)40-

20--

0

0

o..

• *" • ° . ° °

_.,. ° m _ .'. • ° °•'=• _--w• "...*._.'_°•q...--_ • °. =i.•._,.--'_,_•
.=- ••',,,T.",_".'.•.":-.: ..,. • _° *._°"&" • °° • _.° . • --. -*.._,--_ .-.. •.. •° • .•--t

I I I
500 1000 1500

Iteration Number

2000

Figure 8. LP Solution Time vs. Iteration Number.

10

Elapsed
Time

(msec)

m

6_

u

I

°• ••

• •• • • • .° . • • ; ° •
• • . _°. • °°.•• •- - • .° °.-.- •, • "_, • • /.. .:., ;.. _.,-.,. _.. ": ;...,,.-. -._

._,_'_..-_/_o _';_""_, _._._,,. _,_ • _..-_ .._ _. :_ ,.,'.-.._'/..=._-._

I I I

0 500 1000 1500 2000

Iteration Number

Figure 9. Net Assignment Time vs. Iteration Number.

100

Elapsed
Time

(msec)

80-

60-

40-

20-

0

"°

".. . . - . • • . • .. •

• , .. • . ,o ." . ,. , • ,p. • .. , "• , . . o'.

;,-.t,_..._;•.'_'--,t.. °,% ._._..'._.R°,¢ ". • "t-..'"_ " ; •,._.°,_,_,....,_•.,=-.._, .,.,:..'C:°',.--_..-._-.

0

I I I
500 1000 1500

Iteration Number

2000

Figure 10. Total Time vs. Iteration Number.

Projected
Speedup

15-

10-

w

0

Maximum Decomp.

........... Minimum Decomp.

I I I
5 10 15

Number of Processors

Figure 11. Plot of Projected Speedup vs. Number of Processes.

100

80-

60--

Percentage
40-

20-

0

0

Maximum Decomp.

..... Minimum Decomp.

Figure 12.

50 100 150

Problem Size (Z)

Percentage of Tasks in Startup Phase.

200

Table 1, Routing Quality Comparison.

Number of Trks
TW5.4 • UTMC Con.qPreas LocusRouteCircu_

PdmaW1
Pdma_2

PHIGURE
177
404

163
432

177 190 262
447 449 563

Table 2. Uniprocessor Runtime Comparison on a Sun 3/110.

Circuit

Primary1SC
Priman/2SC

Runtime (pecs)
TimberWolf 5.4 PHIGURE

812 214
3883 1116

Table 3. Parallel Algorithm Results.

Circuit

(Nets)
tMmaryl

(1185)

0710)

Min Decomp

P "Irks Time(sec) SpdUp Trks
1 348 33 1.0 177
2 348 17 1.9 177
4 348 9 3.7 177
8 348 6 5.5 177

1 817 187 1.0 404
2 817 97 1.9 404
4 817 52 3.6 404
8 817 30 6.2 404

i

Circuit Xl 1 641 189 1.0 416

(1979) 2 641 92 2.0 416
4 641 47 4.0 416
8 641 29 6.5 416

Circuit X2 1 709 254 1.0 515

(3013) 2 709 139 1.8 515
4 709 74 3.4 515
8 709 44 5.7 515

Circuit X3 1 742 192 1.0 625

(3258) 2 742 97 1.9 . 625
4 742 52 3.7 625
8 742 30 6.4 625

Max Decomp

Time(sec)
66
34
21
14

257
131
74
42

202
101
59
36

284
145
79
44

389
198
106
67

SpdUp
1.0
1.9
3.1
4.7

1.0
1.9
3.5
6.1

1.0
2.0
3.4
5.6

1.0
1.9
3.6
6.5

1.0
1.9
3.7
5.8

